75 research outputs found

    Multi-physics ensemble snow modelling in the western Himalaya

    Get PDF
    Combining multiple data sources with multi-physics simulation frameworks offers new potential to extend snow model inter-comparison efforts to the Himalaya. As such, this study evaluates the sensitivity of simulated regional snow cover and runoff dynamics to different snowpack process representations. The evaluation is based on a spatially distributed version of the Factorial Snowpack Model (FSM) set up for the Astore catchment in the upper Indus basin. The FSM multi-physics model was driven by climate fields from the High Asia Refined Analysis (HAR) dynamical downscaling product. Ensemble performance was evaluated primarily using MODIS remote sensing of snow-covered area, albedo and land surface temperature. In line with previous snow model inter-comparisons, no single FSM configuration performs best in all of the years simulated. However, the results demonstrate that performance variation in this case is at least partly related to inaccuracies in the sequencing of inter-annual variation in HAR climate inputs, not just FSM model limitations. Ensemble spread is dominated by interactions between parameterisations of albedo, snowpack hydrology and atmospheric stability effects on turbulent heat fluxes. The resulting ensemble structure is similar in different years, which leads to systematic divergence in ablation and mass balance at high elevations. While ensemble spread and errors are notably lower when viewed as anomalies, FSM configurations show important differences in their absolute sensitivity to climate variation. Comparison with observations suggests that a subset of the ensemble should be retained for climate change projections, namely those members including prognostic albedo and liquid water retention, refreezing and drainage processes

    Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal

    Get PDF
    This study evaluated future climate change impacts on hydrological and sediment transport processes for the medium-sized (705 km2) agriculture dominated Cobres basin, Portugal, in the context of anti-desertification strategies. We used the Spatial-Temporal Neyman-Scott Rectangular Pulses (STNSRP) model—RainSim V3, a rainfall conditioned weather generator—ICAAM-WG, developed in this study but based on the modified Climate Research Unit daily weather generator (CRU-WG), and a PBSD hydrological model—SHETRAN, to downscale projections of change. Climate projections were derived from the RCM HadRM3Q0 output, provided by the ENSEMBLES project, for the SRES A1B scenario for the period 2041–2070. The RainSim V3 and ICAAM-WG models are demonstrated to be able to reproduce observed climatology for the period 1981–2010. The SHETRAN model reproduces hourly runoff with Nash-Sutcliffe Efficiency (NSE) of 0.86 for calibration (2004–2006) and 0.74 for validation (2006–2008) for basin outlet; it reproduces hourly sediment discharge with NSE of 0.48 for the storm from October 23rd 2006 to October 27th 2006. We found that future mean climate is drier, with mean annual rainfall decreased by 88 mm (19%), mean annual PET increased 196 mm (16%) and consequent mean annual runoff and sediment yield decreased respectively 48 mm (50%) and 1.06 t/ha/year (45%). The future mean annual AET decreases 41 mm (11%), which occurs mainly in spring indicating a more water-limited future climate for vegetation and crop growth. Under current conditions, November to February is the period in which runoff and sediment yield occur frequently; however, it is reduced to December to January in future, with changes in the occurrence rate of 50%. On the other hand, future wet extremes are more right-skewed. Future annual maximum discharge and sediment discharge decrease for extremes with return periods (T) less than 20 years and the decreases are especially greater for those with T less than 2 years; besides, both quantities present the same or slightly lower magnitudes as those with T larger than 20 years. The annual maximum discharge (sediment discharge) series, under control climate, follows the GEV distribution with location parameter of 64.6 m3/s (164.4 kg/s), scale parameter of 46.5 m3/s (120.3 kg/s) and shape parameter of 0.09 (-0.24); under future climate, the annual maximum discharge series follows the gamma distribution with scale parameter of 75.2 m3/s and shape parameter of 0.97 and the annual maximum sediment discharge series follows the three-parameter lognormal distribution with location parameter of -46.2 kg/s, mean of 5.3 kg/s and standard deviation of 0.78. This study has confirmed the increasing concerns of water scarcity and drought problems in southern Portugal; but it also indicated the mitigation of sediment transport for most of time in the future except heavy events. However, the results should be interpreted carefully since we did not consider possible changes of land-use in the future, as well as the climate and hydrological modelling uncertainties

    Comparison of echocardiographic methods for calculating left ventricular mass in elite rugby football league athletes and the impact on chamber geometry

    Get PDF
    Background: Recommendations for the echocardiographic assessment of left ventricular (LV) mass in the athlete suggest the use of the linear method using a two-tiered classification system (2TC). The aims of this study were to compare the linear method and the area-length (A-L) method for LV mass in elite rugby football league (RFL) athletes and to establish how any differences impact the classification of LV geometry using 2TC and four-tier (4TC) classification systems. Methods: Two hundred and twenty (220) male RFL athletes aged 25 ± 5 (14–34 years) were recruited. All athletes underwent echocardiography and LV mass was calculated by the American Society of Echocardiography (ASE) corrected Linear equation (2D) and the A-L method. Left ventricular mass Index (LVMi) was used with relative wall thickness to determine geometry in the 2TC and with concentricity and LV end diastolic volume index for the 4TC. Method specific recommended cut-offs were utilised. Results: Higher values of absolute (197 ± 34 vs. 181 ± 34 g; p < 0.0001) and indexed (92 ± 13 vs. 85 ± 13 g/m2; p < 0.0001) measures of LV mass were obtained from A-L compared to the linear method. Normal LV geometry was demonstrated in 98.2% and 80% of athletes whilst eccentric hypertrophy in 1.4% and 19.5% for linear and A-L respectively. Both methods provided 0.5% as having concentric remodelling and 0% as having concentric hypertrophy. Allocation to the 4TC resulted in 97% and 80% with normal geometry, 0% and 8.6% with eccentric dilated hypertrophy, 0% and 7.7% with eccentric non-dilated hypertrophy, 1.4% and 0.5% with concentric remodelling and 1.4% and 3% with concentric non-dilated hypertrophy for linear and A-L methods respectively. No participants had concentric dilated hypertrophy from either methods. Conclusion: The linear and A-L method for calculation of LV mass in RFL athletes are not interchangeable with significantly higher values obtained using A-L method impacting on geometry classification. More athletes present with eccentric hypertrophy using 2TC and eccentric dilated/non-dilated using 4TC. Further studies should be aimed at establishing the association of A-L methods of LV mass and application of the 4TC to the multi-factorial demographics of the athlete

    Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states

    Get PDF
    Over two-thirds of integral membrane proteins of known structure assemble into oligomers. Yet, the forces that drive the association of these proteins remain to be delineated, as the lipid bilayer is a solvent environment that is both structurally and chemically complex. In this study, we reveal how the lipid solvent defines the dimerization equilibrium of the CLC-ec1 C

    Monitoring mountains in a changing world: new horizons for the Global Network for Observations and Information on Mountain Environments (GEO-GNOME)

    Get PDF
    Mountains are globally distributed environments that provide significant societal benefits, a function that is increasingly compromised by climatic change, environmental stress, political and socioeconomic transformations, and unsustainable use of natural resources. Gaps in our understanding of these processes and their interactions limit our capacity to inform decisions, where both generalities of mountain regions (eg climate processes) and specificities (eg context-specific manifestations of climate risks) matter. The Global Network for Observations and Information on Mountain Environments (GEO-GNOME), a Group on Earth Observations initiative, aims to fill these gaps through accessible Earth Observation (EO) as well as in-situ data and information on global change drivers, conditions, and trends. A workshop convened by the Mountain Research Initiative (MRI) revised GEO-GNOME's work plan, galvanizing a network that promotes relevant monitoring of global change in mountains and is responsive to the integrated knowledge needs of policy, research, and management

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
    • …
    corecore